Extensions 1→N→G→Q→1 with N=C23 and Q=C9⋊S3

Direct product G=N×Q with N=C23 and Q=C9⋊S3
dρLabelID
C23×C9⋊S3216C2^3xC9:S3432,560

Semidirect products G=N:Q with N=C23 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C231(C9⋊S3) = C2×C9⋊S4φ: C9⋊S3/C9S3 ⊆ Aut C23546+C2^3:1(C9:S3)432,536
C232(C9⋊S3) = C2×C32.3S4φ: C9⋊S3/C32S3 ⊆ Aut C2354C2^3:2(C9:S3)432,537
C233(C9⋊S3) = C2×C6.D18φ: C9⋊S3/C3×C9C2 ⊆ Aut C23216C2^3:3(C9:S3)432,397

Non-split extensions G=N.Q with N=C23 and Q=C9⋊S3
extensionφ:Q→Aut NdρLabelID
C23.1(C9⋊S3) = A4⋊Dic9φ: C9⋊S3/C9S3 ⊆ Aut C231086-C2^3.1(C9:S3)432,254
C23.2(C9⋊S3) = C62.10Dic3φ: C9⋊S3/C32S3 ⊆ Aut C23108C2^3.2(C9:S3)432,259
C23.3(C9⋊S3) = C62.127D6φ: C9⋊S3/C3×C9C2 ⊆ Aut C23216C2^3.3(C9:S3)432,198
C23.4(C9⋊S3) = C22×C9⋊Dic3central extension (φ=1)432C2^3.4(C9:S3)432,396

׿
×
𝔽